
Math 564: Advance Analysis 1
Lecture 21

We first preve a technical strengthening of the lebesque cliff. Theorem

Technical Strengthening of Lebesque Diff . If FeLloc(RY, X) Ren for a . e
.
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where Brix) is the lopent ball at x ot radius r in do-metric.
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For xEIRdwecay let a family [BrlxBro of X-measurable set
is saidbe shrink x-nicely box if 7 pt(0, 1) sit. ↓ r > 0

(i) Br() = Bo(x) Where this is the do ball Br(x)
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Strengthening of Leb . Diff
.

For each tele (IRP) , for X-a
.
e . xEIR?

o its (a)· (f(y) - f(x)(dx(y) = 0
,!~r(x)

for
any family [BrBrgo that chrinks i nices to x

. In particular,

lintneox(i)(fdx = f(x)
.

Br(x)
Proof

. By the technical version above
,

there is a would set X : IRA
c .t

.
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oBu BF(y)-f(x) dx() = 0.
Fix x+X of let >Brbreo be

any family let chrinks nicely hex.
But for every so,
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lebesgue density . For a measurable set MFIRd
,

the Leb , diff. Theorem implies:

br. : = lin Ar1m= him x(MMB
-
(x) = Im u . e.

M
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We call the function doe the lebesque clensity function and we call

He set Em := 4x IR9 : dm(x) = 13 the Lobesque density set of M.
This coolly says

Ut DM=x M , :. e . OmAM is X-wall,

Strong 19% Kana. For every weas set MSIRd of positive Lobesque measure,
to a . e . xEM

,
for wall enough UCO

,
M is 99% of Bol.








